SNS: A Simple Model for
Understanding Optimal

Hard Real-Time
Multiprocessor S cheduling

by Greg Levin

based on work with Caitlin Sadowski, lan Pye,
and Scott Brandt

Real-time Scheduling Algorithms

B |n a real-time environment, multiple
processes with computational deadlines
compete for processor time.

"Hard real-time" means it is never okay to miss
deadlines

B \We consider the problem of scheduling a
collection of periodic processes running
on a multiprocessor system.

Example

B 2 processors; 3 tasks, each with 2 units of
work required every 3 time units

cru1 |TESCINEENN,
o) 1 2 3
CPU 2 !TaskZ | | !
0 1 2 3

Example

B 2 processors; 3 tasks, each with 2 units of
work required every 3 time units

cru 1 RSN a5
|

0 /1_2/1 3

CPU 2 iTask 3a, Task2 | l
I I I |

0 1 2 3

Periodic Tasks

B A periodic task is one that requires a
certain amount of work be completed
within each period.

If a task has period p and workload c, then its
utilization u = ¢ / p is the fraction of each period
that the task must be running.

Our Goal (version 1)

B Gjven a set of N tasks on M processors,
find a feasible scheduling of tasks so that
all deadlines are met (if such a scheduling
exists)

We say that a scheduling algorithm is "optimal”
If it find some successful scheduling for any task
set for which some correct scheduling exists

Assumptions

B All processors are equivalent
B Tasks may migrate between processors

® Tasks are independent, and may not run simultaneously on
two processors

® No overhead for context switches or migrations
This model is theoretical, not realistic

In practice, these overheads lead to the use of
suboptimal scheduling algorithms

Theorem 1

® Any collection of tasks whose total
(summed) utilization does not exceed
M and whose individual utilizations do not
exceed 1 has a feasible scheduling.

B Proof: Smaller work intervals can
arbitrarily approximate a task’s fluid rate
curve

Our Goal (version 2)

B Given M processors and a set of N tasks
with total utilization summing to M, find a
feasible scheduling of tasks which

minimizes the number of context switches
and migrations

This goal is ironic, since we started by
assuming that these operations are free

Greedy Scheduling Algorithms

B A Greedy Scheduling Algorithm will, at
various times, choose the M "best" jobs to
run. We need to specify:

What does "best" mean? Earliest deadline”?
Most work remaining?

How often do all N jobs get compared to find
the M best?

10

Examples of Greedy Algorithms

B Farliest Deadline First (EDF)
Schedule the M tasks with the earliest deadlines

B | east Laxity First (LLF)

Laxity is a task's remaining possible idle time
before it must be scheduled in order to finish its
workload by its next deadline

11

Why Greedy Algorithms Fall
On Multiprocessors

B Fxample:

Task 1: Work=9 , Period =10 _i

A
Task 2 : Work =9 , Period =10 ¢
I

A
Task 3 : Work =8 , Period =40

0 10 40

Utilization: 9/10 + 9/10 + 8/40 = 2

12

m s B
Why Greedy Algorithms Fall
On Multiprocessors

Task 1:Work =9, Period =10 _}_

A

Task 2 : Work =9 |, Period =10 JV
A

Task 3 : Work =8 , Period =40 I +
0 10 40

Utilization: 9/10 + 9/10 + 8/40 = 2

CPU1T_ “t

I R IR N N N N B
N D D D D
o1 2 3 4 5 6 7 8 9 10 11 12

13

Why Greedy Algorithms Fall
On Multiprocessors

B By any reasonable criteria, Tasks 1 and 2
are scheduled first

14

Why Greedy Algorithms Fall
On Multiprocessors

B By any reasonable criteria, Tasks 1 and 2
are scheduled first

B EFven attime t =8, Tasks 1 and 2 are the
obvious greedy choices

CPU1iIIIIIIIIIIII b
l

CPU2T

N TR N TR N TR MR B | .
I D D D
o1 2 3 4 5 6 7 8 9 10 11 12

15

Why Greedy Algorithms Fall
On Multiprocessors

B By any reasonable criteria, Tasks 1 and 2
are scheduled first

B EFven attime t =8, Tasks 1 and 2 are the
obvious greedy choices

B However, If Task 3 is not turned on at time
t = 8, one processor will sit idle between

t=9andt=10.

16

Why Greedy Algorithms Fall
On Multiprocessors

m Before t =40, the two processors can do
80 units of work, and there are

2Xx(9x4) + 8 = 80 units of work to do.
If there is any idle time, not all deadlines
can be met.

B Greedy algorithms fail because they can't
see the "big picture.”

17

Why Greedy Algorithms Fall
On Multiprocessors

Task 1 : Work =9 , Period =10 _}_

A

Task 2 : Work =9 , Period =10 ¢
A

Task 3 : Work =8 , Period =40 I +
0 10 40

Utilization: 9/10 + 9/10 + 8/40 = 2

CPU1T_ t

N TR N TR N TR MR B | .
I D D D
o1 2 3 4 5 6 7 8 9 10 11 12

18

- B
Proportioned Algorithms
Succeed On Multiprocessors

Task 1:Work =9, Period =10 _i

Task 2 : Work =9 , Period = 10T JV

Task 3 (Work =2 Penud)‘h Y vllr vllr v

10 40

Utilization: 9/10 + 9/10 +. 2

CPU’I_*
CPU2|T H

I R IR N B B .
I D N R |
01 2 3 4 5 6 7 9 10 11 12

19

Proportional Fairness

B |[nsight: Scheduling tasks is much easier
when they all have the same deadline

® Application: Give all task deadlines to all
jobs, and within each such time window,
assign each job work proportional to its
utilization

20

...Isn't new...

B Previous proportional fairness algorithms:
pfair (1994) - Baruah, Cohen, Plaxton, Varvel
LLREF (2006) - Cho, Ravindran, Jensen
EKG (2006) - Andersson, Tovar

m . but they were all using proportional
fairness without understanding its
simplicity

21

Theorem 2: "3 Rules”

B Given a collection of tasks with total
utilization M, if all tasks are subdivided by
assigning all deadlines to all tasks, then a
scheduling algorithm within a single time
window will succeed if and only if:

It always runs any job with zero laxity
It never runs any job which is completed

M distinct jobs are always running

22

That these conditions are necessary is clear: if laxity for a job
becomes negative, it cannot be completed on time; running a com-
pleted job is locally equivalent to an idle processor, and an idle
processor means that less than a total of M = #; work will be
done in the window, implying failure. We now show that these
conditions are also sufficient.

The shortening of local deadlines will create new scheduling
events. The WORK COMPLETE and ZERO LAXITY events that
occur based on the local deadline at the end of a time window will
be referred to as secondary scheduling events.

Lemma 1 A scheduling of jobs which follows Rules (1)-(3) will
Jail to complete all tasks on time if and only if, at some fime before
ty, there are (at least) M + 1 jobs with zero laxity.

Proof. M + 1 jobs with zero laxity cannot all be finished on time
on M processors. On the other hand, the set of zero laxity jobs
can only grow as time increases, and any job which has not hit
zero laxity by time ¢y will be completed before then. If there
are at most M jobs with zero laxity as time reaches f 7, the other
N — M jobs will be completed. Rule (1) ensures that up to M
zero laxity jobs may be run simultaneously and to completion.
Therefore, an (M + 1) zero laxity job is necessary for failure.

O

The point at which that (M + 1)*' job reaches zero laxity is
referred to as a critical moment.' In the absence of critical mo-
ments, the M processors do the required amount of total work,
and all tasks will be completed on time. We now introduce some
convenient notation, deviating a bit from Cho et. al.. Anything
subscripted with ¢, 7 will indicate job ¢ at the gt secondary event

(which we’'ll assign time #;). ¢; ; is the local work remaining to

!'The notion of a critical moment and the subsequent Lemma 2 are due to Cho
et al.

Theorem 2: Proof

job i at time t;. w;; = i;—-’_‘,—J is the local remaining utilization
of job i, namely, the average rate at which it must ﬁonsumed to
successfully complete. Finally, we define §; = Z;-zl t; j to be
the total local utilization at time j, (the rate at which the whole
system must run).

Lemma 2 (Cho et. al.) If S; < M af time t;, then event j is not
a critical moment.

Proof. If event j is a critical moment, then each of the M 4+ 1
zero laxity jobs (for simplicity, let’s call them 175, .. ., Lary1) has
w; ; = 1. Then §; = Z:ll Ui = Zi’fl'ﬂn\;_.j =M-+1>M.
O

In order to show that a scheduling following Rules (1)-(3) is
feasible, it suffices to show that 5; < M at each secondary event
7.
Proof of Theorem. If we let W; be the total work remaining at
time # ;. then

N N
Wi=) = wlty =) =(t; = 1))S, .
i=1 i=1

According to Lemma 2, we can only run into trouble if S; exceeds
M at some event. However, at any time t; within the schedul-
ing window, if all M/ processors have been fully utilized between
times 0 and #;, then TV; has been getting reduced at a constant
rate of M-per-time unit. That is, W; = W, —{; - M. Since
Wy <ty - M by our general feasibility condition, we have that

_ Wo—t; M _t;-M—t;- M

5 = = =M .
tr— 1 trp— 1y

So long as we fully utilize all processors when available, S; can
never exceed M, and, by Lemma 2, we can never end up with
more than A tasks with zero laxity. [

23

Theorem 2: Implications

® Once we've subdivided all jobs into "time
windows", with all system deadlines as
boundaries, correct scheduling goes from
being incredibly complicated to nearly
trivial.

B \What is the simplest possible algorithm?

24

B
Stack-and-Slice (SNS)

® All time windows are, up to linear scaling,
equivalent, so normalize time window
length to 1

B All jobs now have work equal to their
utilization, and workloads add up to (no
more than) M

25

g B
Stack-and-Slice (SNS)

B Fxample: 3 processors, 7 tasks

0.3 0.5

26

B
Stack-and-Slice (SNS)

B Fxample: 3 processors, 7 tasks

0.3 0.5 0.5 0.6 0.5 0.4 02 |

0 Processor 1 1 Processor 2 9 Processor 3 3

27

B
Stack-and-Slice (SNS)

B Fxample: 3 processors, 7 tasks

0.3 0.5 0.2
0.3 0.6 0.1

‘ ‘ 0.4 04 02
Processor 1
Processor 2

Processor 3

28

B
Stack-and-Slice (SNS)

Processor 1 ‘ ‘

! | Task 3 migrates
0 0.3 0.8 1 from Processor 2

/—\) fo Processor 1

Processor 2 ‘ ‘

| | Task 5 migrates
from Processor 3
fo Processor 2

Processor 3

29

SNS Performance

® N-1 context switches and M-1 migrations
per time window

n T
a

nis is about 1/3 as many as the LLREF
gorithm, but somewhat more than EKG.

I_

owever, the computational overhead is

minimal compared to both.

30

Summary

B Multiprocessor scheduling suddenly
becomes very easy when all deadlines are
shared with all jobs.

B This ease is demonstrated by Stack-and-
Slice, the simplest known optimal
scheduling algorithm for this problem.

31

What's Next?

B The minimal restrictions imposed by the
"3 Rules" theorem leave lots of room to
develop more complicated algorithms to
further reduce context switches and
migrations

® How can we extend these ideas to variants
of this problem??

B Can we reduce the number of operations
enough to make a real implementation of
such a scheduler competitive?

32

. B
Thanks for Listening

B Questions?

